Kamis, 03 Juli 2014

Persamaan Garis Singgung Lingkaran II

Persamaan Garis Singgung Lingkaran II

Pada pembahasan ini, kita akan menentukan persamaan garis singgung lingkaran yang melalui titik A(x1, y1) pada lingkaran yang berpusat di titik (a, b) dan berjari-jari r. Seperti kita ketahui, persamaan lingkaran yang berpusat di titik (a, b) dan berjari-jari r adalah (xa)2 + (yb)2 = r2. Karena titik (x1, y1) terletak pada lingkaran maka,
Persamaan 1
Untuk mengetahui ilustrasi mengenai letak garis singgung terhadap lingkaran tersebut, perhatikan ilustrasi berikut.
Garis Singgung II
Apabila kita membuat ruas garis PA, yaitu jari-jari dari lingkaran P, maka gradien dari ruas garis tersebut adalah
Gradien PA
Karena ruas garis PA merupakan jari-jari yang memiliki salah satu titik ujung di titik A, yaitu titik yang juga dilalui oleh garis singgung k, maka ruas garis PA tegak lurus dengan garis k. Hal ini mengakibatkan,
Gradien k
Karena garis k melalui titik A(x1, y1) dan bergradien mk = –(x1a)/(y1b), maka persamaan garis k adalah
Menemukan Garis Singgung
Apabila kita mensubstitusikan persamaan (1) ke dalam persamaan di atas, maka kita akan memperoleh,
Persamaan Garis Singgung
Sehingga, dari penghitungan di atas kita dapat menyimpulkan persamaan garis singgung yang kita peroleh adalah sebagai berikut.
Persamaan Garis Singgung Lingkaran
Persamaan garis singgung lingkaran yang melalui titik (x1, x2) pada lingkaran (x – a)2 + (y – b)2 = r2 adalah,
(x – a)(x1 – a) + (y – b)(y1 – b) = r2.
Selanjutnya, perhatikan contoh permasalahan mengenai garis singgung lingkaran (xa)2 + (yb)2 = r2 berikut.
Contoh 1: Persamaan Garis Singgung Lingkaran
Tentukan persamaan garis singgung di titik (2, 4) pada lingkaran (x + 4)2 + (y – 5)2 = 37.
Pembahasan Lingkaran yang memiliki persamaan (x + 4)2 + (y – 5)2 = 37 memiliki titik pusat di (a, b) = (–4, 5) dan kuadrat jari-jarinya, r2 = 37. Sehingga persamaan garis singgung yang melalui titik (x1, y1) = (2, 4) pada lingkaran tersebut adalah
Contoh 1
Sehingga, persamaan garis singgung lingkaran tersebut adalah 6xy – 8 = 0.
Selanjutnya bagaimana kalau persamaan lingkarannya tidak ditulis ke dalam bentuk (xa)2 + (yb)2 = r2, tetapi ke dalam bentuk persamaan umum lingkaran. Perhatikan contoh soal selanjutnya berikut.
Contoh 2: Garis Singgung untuk x2 + y2 + Ax + By + C = 0
Carilah persamaan garis singgung pada lingkaran x2 + y2 – 6x + 2y – 3 = 0 di titik yang berabsis 5.
Pembahasan Pertama, kita ubah persamaan x2 + y2 – 6x + 2y – 3 = 0 menjadi bentuk (xa)2 + (yb)2 = r2.
Contoh 2 Lingkaran
Sehingga, lingkaran tersebut memiliki titik pusat di (a, b) = (3, –1) dan kudrat dari jari-jarinya r2 = 13. Selanjutnya kita tentukan titik pada lingkaran tersebut yang berabsis 5. Untuk x = 5, kita memperoleh
Contoh 2 Menentukan y
Sehingga, titik-titik pada lingkaran tersebut yang berabsis 5 adalah (5, –4) dan (5, 2). Diperoleh, persamaan garis singgung yang melalui titik (5, –3) adalah
Contoh 2 Garis Singgung 1
Sedangkan persamaan garis singgung yang melalui titik (5, 2) adalah
Contoh 2 Garis Singgung 2
Jadi, persamaan garis-garis singgungnya adalah 2x – 3y – 22 = 0 dan 2x + 3y – 16 = 0. Perhatikan gambar dari dua garis singgung tersebut.
Garis Singgung Contoh 2

Irisan Kerucut

Rumus jarak, jarak titik dengan titik dan jarak titik dengan garis, dapat digunakan untuk menentukan persamaan dari kurva-kurva irisan kerucut. Tetapi sebelum menentukan persamaan-persamaan tersebut, kita akan membahas beberapa keluarga kurva yang dihasikan oleh irisan kerucut. Topi ulang tahun merupakan salah satu contoh kerucut yang dapat dijumpai di sekitar kita. Titik pada kerucut disebut titik puncak dan lembaran kertas yang membentuk sisi kerucut disebut selimut kerucut. Sesuai dengan namanya kurva-kurva dalam keluarga irisan kerucut, dapat dihasilkan dengan mengiris suatu kerucut, atau lebih tepatnya, kurva-kurva tersebut merupakan hasil perpotongan suatu bidang dengan kerucut. Apabila bidang tersebut tidak melalui titik puncak, irisannya akan menghasilkan lingkaran, elips, parabola, dan hiperbola. Perhatikan gambar berikut.
Irisan Kerucut
Masing-masing irisan kerucut tersebut dapat didefinisikan dalam persamaan jarak titik dengan titik, ataupun jarak titik dengan garis. Misalnya, titik-titik (–4, –2), (4, –2), dan (4, 4) merupakan titik-titik yang berada pada lingkaran yang berpusat di (0, 1) dan berjari-jari 5 satuan. Sehingga, definisi lingkaran adalah himpunan semua titik yang memiliki jarak yang sama (yang disebut jari-jari) terhadap suatu titik tertentu (yang disebut titik pusat).
Contoh lainnya, titik-titik (0, 0), (4, 2) dan (8, 8) yang dilalui oleh suatu parabola memiliki jarak yang sama terhadap titik (0, 2) dan garis y = –2. Ilustrasi ini mengarahkan kita ke dalam definisi parabola: parabola adalah himpunan semua titik yang memiliki jarak yang sama terhadap suatu titik tertentu (yang disebut titik fokus) dan suatu garis yang diberikan (yang disebut garis direktris).
Contoh : Menemukan Persamaan Parabola
Tentukan persamaan parabola yang memuat semua titik yang berjarak sama terhadap titik (0, 2) dan garis y = –2.
Parabola
Pembahasan Kita gunakan pasangan berurutan (x, y) untuk merepresentasikan sembarang titik pada parabola. Karena semua titik pada garis y = –2 dapat dituliskan ke dalam (x, –2), maka kita dapat menyatakan bahwa jarak titik (x, y) terhadap (x, –2) sama dengan jarak (x, y) terhadap (0, 2). Dengan menggunakan rumus jarak,
Persamaan Parabola
Sehingga, semua titik yang memenuhi kondisi tersebut adalah semua titik pada parabola dengan persamaan (1/8)x2.
Lalu bagaimana jika jarak titik (x, y) terhadap fokus kurang dari jarak (x, y) terhadap direktris? Bagaimana jika jarak (x, y) terhadap fokus sama dengan 5/6 dari jarak (x, y) terhadap direktris. Mungkin kita akan menebak bahwa titik-titik (x, y) tersebut akan membentuk kurva dalam keluarga irisan kerucut lainnya. Dalam hal ini, titik tersebut akan membentuk elips. Jika jarak (x, y) terhadap fokus lebih dari jarak (x, y) terhadap direktris, maka titik-titik tersebut akan membentuk hiperbola. Pada gambar a di bawah, panjang ruas garis dari fokus ke masing-masing titik pada grafik (ditunjukkan oleh ruas garis orange), sama dengan 5/6 dari panjang ruas garis dari direktris dengan titik-titik yang sama. Perhatikan bahwa titik-titik yang memenuhi kondisi seperti itu akan membentuk setengah elips. Pada gambar b, garis-garis dan titik-titik yang membentuk setengah elips digerakkan dengan kondisi yang sama sehingga membentuk suatu grafik elips secara utuh.
Ellipse

Persamaan Hiperbola

Persamaan Hiperbola

Seperti kita ketahui, hiperbola merupakan salah satu keluarga irisan kerucut yang dibentuk akibat irisan bidang yang tegak lurus dengan selimut kerucut. Suatu hiperbola memiliki 2 bagian simetris yang disebut cabang, yang terbuka ke arah yang saling berlawanan. Walaupun cabang-cabang tersebut terlihat menyerupai parabola, nantinya kita akan menginvestigasi bahwa cabang-cabang tersebut dan parabola merupakan kurva yang sangat berbeda.
Perhatikan bahwa persamaan Ax2 + By2 = F merupakan persamaan suatu lingkaran apabila A = B dan juga merupakan persamaan suatu elips jika AB. Dua kasus tersebut memuat penjumlahan suku-suku berderajat dua. Selanjutnya mungkin kita akan bertanya-tanya, bagaimana jika persamaannya berupa pengurangan suku-suku berderajat dua. Perhatikan persamaan 9x2 – 16y2 = 144. Dari persamaan tersebut kita dapat mengetahui bahwa titik pusatnya adalah titik asal (0, 0) karena tidak ada pergeseran pada variabel x dan y (a dan b keduanya adalah 0). Dengan menggunakan metode perpotongan kurva, kita dapat menggambar grafik tersebut dan menghasilkan suatu grafik hiperbola.
Contoh 1: Menggambar Grafik Hiperbola Pusat
Gambarlah grafik persamaan 9x2 – 16y2 = 144 dengan menggunakan perpotongan kurva dan beberapa titik tambahan jika diperlukan.
Pembahasan Dengan substitusi x = 0, kita akan menentukan perpotongan kurva tersebut dengan sumbu-y.
Contoh 1 Sumbu y
Karena nilai y2 tidak pernah negatif, kita dapat menyimpulkan bahwa kurva tersebut tidak memiliki titik potong terhadap sumbu-y. Selanjutnya, kita substitusi y = 0 untuk menentukan titik potongnya terhadap sumbu-x.
Contoh 1 Sumbu x
Dengan mengetahui bahwa grafik tersebut tidak memiliki titik potong terhadap sumbu-y, kita pilih nilai x yang lebih dari 4 dan kurang dari –4 untuk membantu sketsa grafik tersebut. Dengan menggunakan x = 5 dan x = –5 menghasilkan,
Contoh 1 Titik Tambahan
Dengan memplot titik-titik yang telah kita temukan di atas kemudian menghubungkannya dengan kurva halus, dan karena kurva tersebut tidak berpotongan dengan sumbu-y, maka grafik dari persamaan yang diberikan dapat digambarkan sebagai berikut.
Contoh 1 Hiperbola
Karena hiperbola di atas memotong sumbu simetri horizontalnya, maka hiperbola di atas disebut sebagai hiperbola horizontal. Titik-titik (4, 0) dan (–4, 0) disebut sebagai titik-titik puncak, dan titik pusat dari hiperbola selalu berada di tengah-tengah titik puncak parabola tersebut. Jika titik pusat hiperbola berada pada titik (0, 0), maka hiperbola tersebut disebut sebagai hiperbola pusat. Sebagai catatan, titik pusat hiperbola bukan merupakan bagian dari kurva, sehingga titik pusat hiperbola di atas, titik yang berwarna biru, digambarkan sebagai titik yang terbuka. Garis yang melewati titik pusat dan titik-titik puncak hiperbola disebut sebagai sumbu transversal, sedangkan garis yang melalui titik pusat dan tegak lurus dengan sumbu transversal ini disebut sebagai sumbu konjugasi.
Pada contoh 1, koefisien dari x2 merupakan bilangan yang positif kemudian dikurangkan dengan 16y2: 9x2 – 16y2 = 144. Hasil yang diperoleh merupakan hiperbola horizontal. Jika suku-y2 positif kemudian dikurangkan dengan suku yang memuat x2, hasilnya merupakan suatu hiperbola vertikal. Lebih jelasnya perhatikan gambar berikut.
Hiperbola Horizontal dan Vertikal
About these ads

Perbedaan antara Persamaan-persamaan Lingkaran, Elips, dan Hiperbola

Perbedaan antara Persamaan-persamaan Lingkaran, Elips, dan Hiperbola

Terdapat beberapa macam kurva dalam keluarga irisan kerucut, 3 di antaranya adalah lingkaran, elips, dan hiperbola. Pada contoh berikut, kita akan mengidentifikasi jenis kurva apa yang dibentuk oleh persamaan-persamaan yang diberikan, tanpa melukis grafik persamaannya. Seperti yang akan kita ketahui, jenis-jenis persamaan yang bersesuaian akan memiliki karakteristik tertentu yang dapat membantu kita untuk membedakan antara persamaan satu dengan persamaan lainnya.
Contoh: Mengidentifikasi Irisan Kerucut dari Persamaannya
Identifikasi masing-masing persamaan berikut apakah merupakan persamaan lingkaran, elips, ataukah hiperbola. Berikan alasanmu dan tentukan titik pusatnya, tetapi jangan menggambar grafik-grafiknya.
  1. y2 = 36 + 9x2
  2. 4x2 = 16 – 4y2
  3. x2 = 225 – 25y2
  4. 25x2 = 100 + 4y2
  5. 3(x – 2)2 + 4(y + 3)2 = 12
  6. 4(x + 5)2 = 36 + 9(y – 4)2
Pembahasan
  1. Dengan menulis persamaannya menjadi y2 – 9x2 = 36, kita memperoleh a = 0 dan b = 0. Karena persamaan tersebut memuat selisih suku-suku berderajat dua, maka persamaan tersebut merupakan persamaan hiperbola (vertikal). Titik pusat dari hiperbola tersebut adalah (0, 0).
  2. Kita tulis kembali persamaan tersebut menjadi 4x2 + 4y2 = 16, kemudian membagi kedua ruas dengan 4, maka kita akan memperoleh persamaan x2 + y2 = 4. Persamaan tersebut merupakan persamaan lingkaran berjari-jari 2 dan memiliki titik pusat di (0, 0).
  3. Persamaan x2 = 225 – 25y2 dapat ditulis menjadi x2 + 25y2 = 225. Persamaan tersebut terdiri dari penjumlahan suku-suku berderajat dua yang memiliki koefisien berbeda. Sehingga, persamaan tersebut merupakan persamaan elips yang memiliki titik pusat di (0, 0).
  4. Dengan menulis kembali persamaan yang diberikan menjadi 25x2 – 4y2 = 100, kita dapat melihat persamaan tersebut memuat pengurangan suku-suku berderajat dua. Sehingga, persamaan tersebut merupakan persamaan dari hiperbola (horizontal) dengan titik pusat di (0, 0).
  5. Persamaan yang diberikan memiliki bentuk pemfaktoran dan memuat penjumlahan suku-suku berderajat dua dengan koefisien yang berbeda. Persamaan ini merupakan persamaan suatu elips dengan titik pusat di (2, –3).
  6. Setelah kita tulis kembali persamaan yang diberikan menjadi 4(x + 5)2 – 9(y – 4)2 = 36, kita dapat mengamati bahwa persamaan tersebut memuat pengurangan suku-suku berderajat dua yang memiliki koefisien berbeda. Sehingga, persamaan tersebut merupakan persamaan suatu hiperbola horizontal dengan titik pusat di (–5, 4).

FAKTOR-FAKTOR PERSEKUTUAN DAN FPB

 FAKTOR-FAKTOR PERSEKUTUAN DAN FPB

Andi memiliki 12 buah apel dan 18 buah jeruk. Dia berencana untuk membagikan buah-buah tersebut secara rata kepada temannya. Yang dimaksud rata di sini adalah bahwa temannya akan mendapatkan buah apel dan buah jeruk yang banyaknya sama dengan temannya yang lain. Ada berapa banyak teman Andi yang akan menerima buah-buahan tersebut? Berapa banyak teman Andi maksimal yang akan menerima buah-buahan tersebut?
Buah-buahan
Kemungkinan pertama, Andi dapat memberikan buah-buahan tersebut kepada seorang temannya. Sehingga temannya tersebut akan mendapatkan 12 buah apel dan 18 buah jeruk. Kemungkinan ini merupakan kemungkinan yang paling sederhana. Kemungkinan kedua, Andi dapat memberikan buah-buahan tersebut kepada 2 orang temannya. Sehingga masing-masing temannya akan mendapatkan 12 : 2 = 6 buah apel dan 18 : 2 = 9 buah jeruk.
Apakah Andi dapat membagikan buah-buahannya tersebut secara rata kepada 4 orang temannya? Tentu tidak. Buah apel yang berjumlah 12 memang dapat dibagi dengan 4, akan tetapi banyaknya buah jeruk, yaitu 18, apabila dibagi dengan 4 sama dengan 4 dan sisa 2. Atau dengan kata lain, 18 dibagi 4 tidak menghasilkan suatu bilangan bulat. Ini dapat dikatakan bahwa 4 merupakan faktor dari 12, tetapi bukan faktor dari 18. Apakah yang dimaksud faktor suatu bilangan?
Faktor suatu bilangan adalah suatu bilangan yang dapat habis membagi bilangan tersebut.
Mari kita kembali kepada permasalahan di awal. Ada berapa banyak teman Andi yang akan menerima buah-buahan tersebut? Untuk menjawab pertanyaan ini, mari kita daftar semua faktor dari 12 dan 18. Semua faktor dari 12 adalah 1, 2, 3, 4, 6, dan 12. Sedangkan semua faktor dari 18 adalah 1, 2, 3, 6, 9, dan 18. Kedua bilangan 12 dan 18 memiliki faktor-faktor yang sama, yaitu 1, 2, 3, dan 6. Faktor-faktor yang sama tersebut disebut faktor persekutuan.
Faktor persekutuan adalah faktor-faktor yang sama dari dua bilangan atau lebih.
Banyaknya teman Andi yang akan diberikan buah harus dapat membagi bilangan 12 maupun 18. Sehingga banyaknya teman Andi haruslah faktor-faktor persekutuan dari 12 dan 18, yaitu 1, 2, 3, dan 6.
Selanjutnya mari kita lihat pertanyaan lainnya. Berapa banyak teman Andi maksimal yang akan menerima buah-buahan tersebut? Karena banyaknya teman Andi haruslah 1, 2, 3, dan 6, maka banyaknya teman Andi maksimal adalah 6 orang. Enam merupakan bilangan terbesar dari faktor-faktor persekutuan dari 12 dan 18. Hal ini dapat dikatakan bahwa 6 merupakan faktor persekutuan terbesar (FPB) dari 12 dan 18.
Faktor persekutuan terbesar (FPB) adalah faktor persekutuan yang nilainya terbesar di antara faktor-faktor persekutuan lainnya.
Setelah mengenal faktor, faktor persekutuan, dan FPB, mari kita lanjutkan pembahasan kita menuju bagaimana cara menentukan FPB dari dua bilangan atau lebih. Untuk menentukan FPB dari dua bilangan atau lebih, kita dapat menggunakan cara mendaftar, faktorisasi prima, dan sengkedan.
Menentukan FPB dengan Cara Mendaftar
Misalkan kita akan menentukan FPB dari 24 dan 32. Pertama, kita daftar semua faktor dari 24 dan 32. Semua faktor dari 24 dan 32 dapat ditentukan dengan menggunakan tabel berikut.
Tabel Faktor
Dari tabel tersebut kita dapat memperoleh bahwa faktor persekutuan dari 24 dan 32 adalah 1, 2, 4, dan 8. Sehingga FPB dari 24 dan 32 adalah 8.
Menentukan FPB dengan Faktorisasi Prima
Misalkan kita akan menentukan FPB dari 140 dan 250. Pertama, kita tulis 140 dan 250 dalam perkalian faktor-faktor primanya. Faktor-faktor prima dari 140 dan 250 dapat dicari dengan menggunakan pohon faktor.
Pohon Faktor
Dari pohon faktor di atas dapat diperoleh,
140 = 22 × 5 × 7
250 = 2 × 53
Setelah mengubah bilangan-bilangan 140 dan 250 ke dalam perkalian faktor-faktor primanya, selanjutnya kita tentukan FPB-nya. Bagaimana caranya?
FPB dari dua bilangan dapat ditentukan dengan mengalikan faktor persekutuan prima dengan pangkat terendah.
Faktor persekutuan prima dari 140 dan 250 adalah 2 dan 5. Faktor prima 2 dari 140 berpangkat 2, sedangkan faktor prima 2 dari 250 berpangkat 1. Kita pilih yang pangkatnya terendah, yaitu 2 pangkat 1. Demikian juga dengan faktor prima 5 dari 140 dan 250, kita pilih faktor yang pangkatnya terendah, yaitu 5 pangkat 1. Sehingga FPB dari 140 dan 250 adalah 2 × 5 = 10.
Menentukan FPB dengan Cara Sengkedan
Pada contoh-contoh sebelumnya kita menentukan FPB dari 2 bilangan. Sekarang kita akan menentukan FPB dari 3 bilangan, yaitu 18, 24, dan 30. FPB dari 18, 24, dan 30 dapat ditentukan dengan cara sengkedan sebagai berikut.
Cara Sengkedan
Aturan dari cara sengkedan adalah sebagai berikut:
  1. Tuliskan bilangan-bilangan yang akan ditentukan FPB-nya secara mendatar.
  2. Carilah bilangan prima yang dapat membagi sebagian atau seluruh bilangan tersebut. Untuk mencari bilangan prima ini, sebaiknya pilih bilangan prima dari yang terkecil: 2, 3, 5, dan seterusnya.
  3. Apabila bilangan prima pembagi yang dipilih dapat membagi semua bilangan, lingkarilah bilangan prima tersebut. Tuliskan hasil baginya di baris bawah bilangan yang dibagi.
  4. Apabila ada bilangan yang tidak habis dibagi oleh bilangan prima pembagi, tuliskan kembali bilangan tersebut di baris bawahnya.
  5. Lakukan terus menerus hingga mendapatkan suatu baris yang hanya berisi bilangan 1.
  6. FPB dari bilangan-bilangan yang dicari adalah perkalian semua bilangan prima pembagi yang dilingkari.
Dari contoh di atas, kita memperoleh bahwa bilangan prima pembagi yang dilingkari adalah 2 dan 3. Sehingga FPB dari 18, 24, dan 30 adalah 2 × 3 = 6.
Setelah kita berlatih menentukan FPB dari 2 atau 3 bilangan di atas, selanjutnya kita akan mencoba untuk menyelesaikan permasalahan berikut.
Pemecahan Masalah
Bilangan-bilangan 3.154, 17.328, dan 11.027 dibagi dengan bilangan yang sama sisanya berturut-turut adalah 4, 3, dan 2. Berapa bilangan pembagi terbesar yang mungkin?

PERKALIAN PECAHAN

 PERKALIAN PECAHAN

Untuk mengikuti lomba memasak, Indira dan kelompoknya diwajibkan membawa bahan-bahan untuk memasak. Dalam kelompok Indira tersebut, Indira dan seorang temannya, Mawar, ditugasi temannya untuk membawa beras dua pertiga kilogram. Indira dan Mawar sepakat bahwa masing-masing dari mereka akan membawa setengah dari beras tersebut. Berapa kilogram beras yang akan dibawa oleh Indira?
Untuk menjawab permasalahan tersebut, kita dapat menggunakan operasi perkalian pada pecahan. Indira akan membawa setengah dari dua pertiga kilogram beras, yang dapat dituliskan 1/2 × 2/3 kg. Berapakah hasil kali 1/2 dan 2/3? Untuk menjawabnya, kita dapat menggunakan konsep luas persegi panjang sebagai berikut.
Perkalian Pecahan
Perhatikan persegi panjang warna hijau! Persegi panjang tersebut memiliki panjang 2/3 dan lebar 1/2. Dari gambar di atas, dengan jelas kita dapat mengetahui bahwa luas dari persegi panjang tersebut adalah 2/6 bagian dari persegi satuan. Karena luas persegi panjang adalah panjang dikali lebar, maka kita dapat memperoleh 2/3 × 1/2 = 2/6. Sehingga, beras yang akan dibawa oleh Indira adalah 2/6 atau 1/3 kg.
Apa yang dapat kita simpulkan dari permasalahan di atas? Sebelum kita masuk ke kesimpulan, perhatikan beberapa contoh perkalian pecahan lainnya berikut.
Perkalian Pecahan II
Dari gambar 1 kita dapat memperoleh bahwa 2/5 dikali 3/4 sama dengan 6/20. Pada gambar 2, 7/8 dikali dengan 3/4 sama dengan 21/32. Sedangkan pada gambar 3, kita dapat memperoleh bahwa 4/6 dikali dengan 5/6 sama dengan 20/36. Ketiga perkalian pecahan di atas dapat dituliskan sebagai berikut.
Perkalian Pecahan III
Apa yang dapat kita amati dari perkalian di atas? Bagaimana dengan pembilang dan penyebut dari pecahan hasil perkalian? Pada perkalian pertama, pembilang dari hasil perkaliannya adalah 6, yang sama dengan 2 × 3, yaitu perkalian dari pembilang pecahan-pecahan yang dikalikan. Sedangkan penyebut dari hasil perkaliannya adalah 20, yang sama dengan 5 × 4, yaitu perkalian dari penyebut pecahan-pecahan yang dikalikan. Demikian juga pada operasi perkalian kedua dan ketiga.
Hasil kali dua pecahan merupakan pecahan yang pembilang dan penyebutnya secara berturut-turut merupakan perkalian dari pembilang dan penyebut pecahan-pecahan yang dikalikan.
Untuk lebih memahami mengenai perkalian pecahan, perhatikan beberapa contoh berikut.
Perkalian Pecahan IV
Bagaimana dengan perkalian yang melibatkan bilangan asli atau pecahan campuran? Untuk kasus ini, kita harus mengubah bilangan asli dan pecahan campuran tersebut ke dalam pecahan biasa. Perhatikan contoh berikut!
Perkalian Pecahan V

PENGURANGAN PECAHAN

 PENGURANGAN PECAHAN

Dalam suatu upacara bendera, Dewi, Cecil, dan Rahma berada dalam satu barisan. Dewi berada paling depan, Cecil 1/4 dam di belakang Dewi, sedangkan Rahma berada 3/4 dam di belakang Dewi. Dapatkah kita menentukan jarak Cecil dengan Rahma? Untuk menjawabnya, pertama-tama perhatikan gambar berikut!
Barisan
Dari gambar di atas, kita dapat memperoleh bahwa jarak antara Cecil dengan Rahma adalah 2 bagian dari 4 dekameter. Atau dengan kata lain, tiga perempat dikurangi seperempat sama dengan dua perempat. Pernyataan tersebut apabila dituliskan dalam bentuk pecahan akan menjadi seperti berikut.
Pengurangan Pecahan I
Apabila kita perhatikan, operasi pengurangan pada pecahan memiliki aturan yang sama dengan operasi penjumlahan, yaitu pembilang dikurangi dengan pembilang, sedangkan penyebutnya tetap. Operasi pengurangan di atas dapat kita lengkapi sebagai berikut.
Pengurangan Pecahan II
Bagaimana dengan operasi pengurangan pada pecahan-pecahan yang memiliki penyebut yang berbeda? Ya, seperti pada operasi penjumlahan, kita harus menyamakan penyebut dari pecahan-pecahan tersebut menjadi KPK-nya sebelum melakukan operasi pengurangan. Perhatikan beberapa contoh berikut!
Pengurangan Pecahan III
Pengurangan pecahan di atas dapat dimodelkan oleh gambar berikut.
Pengurangan Pecahan
Dari uraian di atas, apakah kamu sudah memahami operasi pengurangan pada pecahan? Okay, kalau sudah, sekarang waktunya untuk menyelesaikan permasalahan berikut.
Pemecahan Masalah
Perhatikan garis bilangan berikut!
Garis Bilangan
Dengan menggeser garis bilangan tersebut ke kiri atau ke kanan, tentukan hasil dari 3/4 – 1/2!

MENENTUKAN FPB DAN KPK MENGGUNAKAN EXCEL

MENENTUKAN FPB DAN KPK MENGGUNAKAN EXCEL

 Sebelum pada pembahasan ini, kita telah berlatih untuk menentukan faktor persekutuan terbesar (FPB) dan kelipatan persekutuan terkecil (KPK) dengan menggunakan tiga cara, yaitu dengan cara mendaftar, faktorisasi prima, dan cara sengkedan. Sekarang kita akan berlatih menentukan FPB dan KPK dengan menggunakan Microsoft Excel. Bagaimana caranya?
FPB atau yang dalam bahasa Inggris greatest common divisor (GCD), dapat ditentukan dengan menggunakan fungsi GCD. Fungsi ini dapat kita temukan pada kelompok tab FORMULAS Microsoft Excel, dan pada bagian Function Library pilih Math & Trig. Pada submenu Math & Trig ini, kita arahkan mouse ke bawah dan kita akan menemukan fungsi GCD, seperti yang ditunjukkan gambar berikut.
Screenshot Fungsi GCD
Jika kita memilih fungsi GCD tersebut, akan tampil jendela Function Arguments sebagai berikut.
GCD Function Arguments
Pada jendela Function Arguments tersebut terdapat kotak teks Number1 dan Number2. Kotak teks tersebut sebagai tempat mengisi bilangan-bilangan yang akan kita tentukan FPB-nya. Apabila kita akan menentukan FPB dari 24 dan 36, kita isi kotak teks Number1 dengan 24 dan Number2 dengan 36, atau sebaliknya. Kotak teks tersebut akan bertambah secara otomatis apabila kita sudah mengisi 2 bilangan. Sehingga kita juga dapat menentukan FPB dari 3 bilangan. Apabila kita ingin menentukan FPB dari 3 bilangan, yaitu 24, 36, dan 42, kita cukup menuliskan bilangan-bilangan tersebut pada kotak teks Number1, Number2, dan Number3.
Setelah kita mengisi kotak-kotak teks tersebut, selanjutnya klik tombol OK. Maka FPB dari ketiga bilangan di atas akan dituliskan pada sel tertentu, seperti pada gambar berikut.
GCD dari 3 Bilangan
Sekarang perhatikan formula bar pada gambar di atas. Pada formula bar tersebut, tertulis =GCD(24,36,42). Sehingga, kita juga dapat menuliskan fungsi =GCD(number1, number2, …) pada sel untuk menentukan FPB dari beberapa bilangan tertentu. Number1, number2, … dapat diganti dengan bilangan-bilangan tertentu, yang akan kita tentukan FPB-nya. Banyaknya bilangan boleh lebih dari 2 dan masing-masing bilangan dipisahkan dengan tanda koma.
GCD dengan Menulis
Bagaimana dengan menentukan KPK? Untuk menentukan KPK, langkahnya hampir sama dengan menentukan FPB. Akan tetapi fungsi untuk menentukan KPK adalah =LCM(number1, number2, …). Sehingga, apabila kita ingin menentukan KPK dari 12, 16, dan 20, maka kita dapat menuliskan =LCM(12,16,20) pada sel tertentu.
KPK Beberapa Bilangan

KELIPATAN PERSEKUTUAN KPK

 KELIPATAN PERSEKUTUAN KPK

Mika dan Miko bersama-sama terdaftar sebagai siswa di suatu lembaga bimbingan belajar. Dalam lembaga bimbingan belajar tersebut, Mika memiliki jadwal untuk les matematika tiap 2 hari sekali, sedangkan Miko tiap 3 hari sekali. Apabila hari ini mereka bertemu dalam les matematika, berapa hari lagi mereka akan bertemu di les matematika berikutnya?
Untuk mengetahui kapan Mika dan Miko akan bertemu pada les matematika berikutnya, kita modelkan jadwal les mereka berdua sebagai berikut.
Jadwal Les Mika & Miko
Dari tabel tersebut, kita dapat melihat bahwa Mika akan les pada 2, 4, 6, 8, 10, dan 12 hari berikutnya. Sedangkan Miko akan les pada 3, 6, 9, dan 12 hari berikutnya. Dari contoh ini kita dapat menyebut bahwa 2, 4, 6, 8, dan 10 merupakan kelipatan-kelipatan dari 2, sedangkan 3, 6, 9, dan 12 merupakan kelipatan-kelipatan dari 3. Jadi apakah yang dimaksud dengan kelipatan?
Kelipatan suatu bilangan adalah hasil perkalian bilangan itu dengan bilangan asli.
Dari tabel di atas, kita juga dapat melihat bahwa Mika dan Miko akan bertemu les matematika pada hari ke-6 dan ke-12. Bilangan-bilangan 6 dan 12 ini merupakan kelipatan persekutuan dari 2 dan 3.
Kelipatan persekutuan adalah kelipatan dari suatu bilangan yang sama dengan kelipatan bilangan lainnya.
Dapatkah kamu menyebutkan kelipatan-kelipatan persekutuan dari 2 dan 3 selain 6 dan 12? Kelipatan persekutuan dari 2 dan 3 selain 6 dan 12 di antaranya adalah 18, 24, dan 30. Dari sini kita dapat melihat bahwa kelipatan persekutuan dari 2 dan 3 jumlahnya sangat banyak sekali. Akan tetapi dari kelipatan-kelipatan persekutuan tersebut ada yang terkecil, yaitu 6. Bilangan 6 ini selanjutnya disebut kelipatan persekutuan terkecil (KPK) dari 2 dan 3.
Kelipatan Persekutuan Terkecil (KPK) dari beberapa bilangan adalah bilangan kelipatan dari bilangan-bilangan tersebut yang paling kecil.
Setelah kita mengenal kelipatan, kelipatan persekutuan, dan KPK, sekarang kita akan berlatih untuk menemukan KPK dari dua bilangan atau lebih. Seperti dalam menemukan FPB, KPK dapat ditentukan dengan cara mendaftar, faktorisasi prima, dan cara sengkedan.
Menentukan KPK dengan Cara Mendaftar
Misalkan kita akan menentukan KPK dari 12 dan 18. Untuk menentukan KPK-nya, kita dapat mendaftar beberapa kelipatan dari kedua bilangan tersebut dalam tabel seperti berikut.
Tabel Kelipatan
Dari tabel tersebut kita mendapatkan bahwa kelipatan dari 12 dan 18 di antaranya adalah 36, 72, dan 108. Sehingga, KPK dari 12 dan 18 adalah 36.
Menentukan KPK dengan Fakorisasi Prima
Sebelumnya kita telah menentukan KPK dari 12 dan 18 dengan menggunakan cara mendaftar. Sekarang kita akan menentukan KPK dari kedua bilangan tersebut dengan faktorisasi prima. Untuk menentukan faktorisasi prima dari 12 dan 18, kita dapat menggunakan pohon faktor.
Pohon Faktor
Sehingga,
12 = 22 × 3
18 = 2 × 32
Setelah mengubah 12 dan 18 dalam bentuk faktorisasi primanya, selanjutnya kita akan tentukan KPK dari kedua bilangan tersebut. Bagaimana cara menentukan KPK dari beberapa bilangan apabila faktorisasi prima dari bilangan-bilangan tersebut diketahui?
KPK dari beberapa bilangan dapat ditentukan dengan mengalikan semua faktor prima dari bilangan-bilangan tersebut dan dipilih pangkat yang paling tinggi.
Perhatikan bahwa 12 sama dengan 2 pangkat 2 dikali 3. Sedangkan 18 sama dengan 2 kali 3 pangkat 2. Sehingga semua faktor prima dari kedua bilangan tersebut adalah 2 dan 3. Pangkat tertinggi dari 2 adalah 2 dan pangkat tertinggi dari 3 adalah 2. Sehingga KPK dari 12 dan 18 adalah 22 × 32 = 36.
Menentukan KPK dengan Cara Sengkedan
Pada dua contoh sebelumnya, kita telah mencari KPK dari 2 bilangan. Kali ini kita akan mencoba untuk menentukan KPK dari 3 bilangan, yaitu 1.575, 2.625, dan 6.615. Untuk menentukan KPK dari tiga bilangan tersebut dengan cara sengkedan, perhatikan gambar berikut.
Cara Sengkedan
Aturan dalam cara sengkedan untuk menentukan KPK hampir sama dengan menentukan FPB. Apabila FPB dari beberapa bilangan merupakan perkalian dari bilangan prima pembagi yang dilingkari, untuk menentukan KPK kita harus mengalikan semua bilangan prima pembagi tersebut. Sehingga KPK dari 1.575, 2.625, dan 6.615 adalah 33 × 53 × 72 = 165.375.
Dari pembahasan di atas, kita telah mengenal kelipatan, kelipatan persekutuan, dan KPK. Selain itu kita juga berlatih untuk menentukan KPK dengan 3 cara, yaitu cara mendaftar, faktorisasi prima, dan cara sengkedan. Ketiga cara ini dapat dipilih salah satu untuk menentukan KPK dari beberapa bilangan. Semoga bermanfaat, yos3prens.

MEMBANDINGKAN PECAHAN DENGAN GAME

MEMBANDINGKAN PECAHAN DENGAN GAME
Kotak CokelatMateri pecahan sering menjadi momok bagi sebagian besar siswa SD ataupun SMP. Untuk itu, mari kita pelajari pecahan dengan cara yang lebih manis, yaitu dengan game “Pesta Cokelat Maksimal”. Pada game ini kita akan belajar untuk membagi cokelat. Selain itu kita juga akan berlatih membandingkan dan mengurutkan bagian-bagian cokelat, yang digunakan sebagai konteks dari pecahan.
Aturan Game
Pada game ini membutuhkan 3 buah meja dan 6 buah cokelat. Satu, dua, dan tiga buah cokelat, yang memiliki kesamaan dalam ukuran dan rasa, secara berturut-turut diletakkan pada meja pertama, kedua, dan ketiga. Setiap tamu yang datang memilih satu dari ketiga meja tersebut kemudian duduk mengelilingi meja tersebut. Aturan dari game ini menyatakan bahwa jika semua tamu telah duduk, cokelat yang ada pada meja tersebut dibagi sama rata kepada seluruh tamu yang mengelilingi meja tersebut. Untuk tujuan dalam game ini, kita anggap bahwa semua pemain menginginkan bagian cokelat yang semaksimal mungkin, dan semua tamu yang memilih meja menganggap dirinya sebagai tamu yang terakhir.
Meja 1, 2, 3
Dan Game-pun Dilakukan
Ketika memainkan game ini, tempatkan lembar kerja di setiap meja. Lembar kerja tersebut dapat ditunjukkan oleh gambar berikut.
Lembar Kerja Siswa
Semua partisipan game ini berdiri agak jauh dari meja, akan tetapi mereka juga harus jelas untuk melihat cokelat yang ada di atas meja dan semua tamu yang telah duduk mengelilingi meja tersebut. Semua partisipan juga harus memiliki copy-an dari lembar kerja di atas. Setelah setiap tamu baru yang duduk, semua partisipan (termasuk mereka yang telah duduk) harus memikirkan di mana tamu selanjutnya seharusnya duduk. Adalah hal yang penting untuk menanyakan kepada setiap tamu baru, mengapa dia memilih meja tertentu. Semua partisipan lainnya mendengarkan dengan cermat pendapat dari tamu baru tersebut untuk mendiskusikannya, apakah pendapat tamu baru tersebut benar atau salah.
Diskusi Langkah Demi Langkah Selama Game Berlangsung
Perhatikan tabel di bawah dan ikuti penjelasannya.
Lembar Kerja Siswa II
Karena semua kotak cokelat pada masing-masing meja memiliki ukuran yang sama, maka kita gunakan kata “bagian” sebagai satuan dalam keseluruhan pembahasan ini. Tamu yang datang pertama kali akan memilih meja ke-3. Mengapa? Karena saat pertama kali datang, banyaknya cokelat pada meja pertama paling banyak di antara meja-meja yang lain. Tamu kedua akan mendapat 1 bagian pada meja pertama, 2 bagian pada meja ke-2, dan 1 1/2 bagian pada meja ke-3, karena 3 bagian pada meja ini akan dibagi kepada tamu sebelumnya. Sehingga tamu ke-2 akan memilih meja yang ke-2. Tamu ke-3 akan mendapat 1 bagian pada meja pertama, 1 bagian pada meja ke-2, dan 1 1/2 pada meja ke-3. Sehingga tamu ke-3 akan memilih meja ke-3.
Tamu 4, 5, dan 6
Tamu ke-4 dapat memilih sembarang meja, karena ada 1 bagian cokelat yang menunggunya pada masing-masing meja. Misalkan tamu ke-4 memilih meja yang pertama. Maka tamu ke-5 dan 6 secara berturut-turut bisa memilih meja yang ke-3 dan 2. Bagaimana jika tamu ke-4 memilih meja yang berbeda? Maka tamu ke-5 dan ke-6 memilih meja yang berbeda pula. Perhatikan gambar berikut!
Tamu 4, 5, dan 6
Dari gambar di atas, apapun urutan meja yang dipilih oleh tamu ke-4, 5, dan 6 tidak akan mengubah bagian cokelat yang akan diterima oleh tamu ke-7, pada masing-masing meja.
Tamu Ke-7
Keputusan meja mana yang akan dipilih oleh tamu ke-7 patut mendapat perhatian yang berbeda. Tamu ke-7 akan mendapat pilihan 1/2 bagian pada meja pertama, 2/3 bagian pada meja ke-2, dan 3/4 bagian pada meja ke-3. Manakah yang paling besar: 1/2, 2/3, ataukah 3/4? Kita dapat menganggap setiap pecahan tersebut sebagai “pecahan yang kurang dari keseluruhan.” Bagaimanapun, ketiga pecahan tersebut berbeda: 1/2 sama dengan 1/2 kurangnya dari keseluruhan, 2/3 sama dengan 1/3 kurangnya dari keseluruhan, dan 3/4 sama dengan 1/4 kurangnya dari keseluruhan. Maka, kita dapat membandingkan unit-unit pecahan 1/2, 1/3, dan 1/4 terlebih dahulu. Yang dimaksud unit pecahan di sini adalah pecahan yang memiliki pembilang sama dengan 1.
Bayangkan 3 kotak cokelat yang memiliki ukuran/besar sama. Satu kotak dibagi menjadi 2 bagian yang sama, satu kotak dibagi menjadi 3 bagian yang sama, dan satu kotak dibagi menjadi 4 bagian yang sama. Bagian manakah yang terkecil, bagian manakah yang terbesar?
Membagi Cokelat
Semakin banyak kita membagi cokelat, maka semakin kecil bagian cokelat yang kita dapat. Atau secara informal, kita dapat mengatakan: “Semakin banyak teman semakin bagus, akan tetapi tidak demikian apabila kita ingin membagikan cokelat.” Sehingga, 1/2 > 1/3 > 1/4. Secara matematis, kita dapat menyatakan bahwa: Beberapa unit pecahan dapat dibandingkan dengan membandingkan penyebutnya–semakin besar penyebutnya, semakin kecil nilai unit pecahan tersebut.
Bayangkan 3 kotak cokelat yang sama. Satu kotak cokelat pertama dipotong 1/2 bagian, satu kotak cokelat pertama dipotong 1/3 bagian, dan satu kotak cokelat lainnya dipotong 1/4 bagian. Dari ketiga kotak cokelat tersebut, kotak cokelat manakah yang memiliki bagian sisa yang paling besar? Jawaban dari pertanyaan ini sama dengan jawaban dari pertanyaan, “Cokelat manakah yang dipotong paling kecil?” Sehingga, 3/4 > 2/3 > 1/2. Ini berarti bahwa, tamu ke-7 harus memilih meja yang ke-3.
Tamu 8 sampai 12
Tamu ke-8 akan membandingkan 2/3 dan 3/5, karena kedua pecahan tersebut lebih besar dari 1/2. Tetapi, seberapa lebih besarkah? Untuk membandingkannya, perhatikan gambar berikut!
Sepertiga dan Seperlima
Dari gambar di atas, kita dapat melihat bahwa 2/3 lebih dari 1/2, sebesar setengahnya 1/3. Sedangkan 3/5 lebih dari 1/2, sebesar setengahnya 1/5. Padahal 1/5 kurang dari 1/3. Sehingga, setengahnya 1/5 kurang dari setengahnya 1/3. Hal ini menyebabkan 3/5 kurang dari 2/3. Sehingga, tamu ke-8 seharusnya memilih meja yang ke-2. Selanjutnya, tamu ke-9 pergi ke meja ke-3.
Tamu ke-10 dapat memilih meja manapun, karena dia akan mendapatkan bagian yang sama, yaitu 1/2 bagian dari kotak cokelat. Akan tetapi, pada meja ke-2 bagian yang akan diterima direpresentasikan dengan 2/4, sedangkan pada meja ke-3 direpresentasikan dengan 3/6. Sehingga, kita dapat mengatakan bahwa 1/2 = 2/4 = 3/6. Ketiga pecahan tersebut merupakan pecahan yang senilai. Apa itu pecahan senilai?
Pecahan senilai dari pecahan tertentu dapat diperoleh dengan mengalikan pecahan tertentu tersebut dengan suatu bilangan. Atau dapat disimbolkan, a/b = p/q, apabila p = k × a dan q = k × b, untuk a, b, p, q, dan k merupakan bilangan asli.
Misalkan tamu ke-10 memilih meja pertama dan tamu ke-11 memilih meja ke-3. Maka tamu ke-12 akan memilih meja ke-2.
Tamu 13
Meja manakah yang seharusnya dipilih oleh tamu ke-12? Mari kita mulai dengan membandingkan 1/3 dan 2/5. Dengan menggunakan pecahan senilai, kita dapatkan 1/3 = 2/6. Sebelumnya, kita telah mendapatkan, untuk unit-unit pecahan, semakin besar penyebutnya, semakin kecil nilai unit pecahan tersebut. Sehingga, 1/5 lebih besar dari 1/6. Sehingga pertidaksamaan itu juga berlaku bagi dua kali dari masing-masing unit pecahan tersebut. Diperoleh, 2/5 > 2/6. Sehingga aturan ini tidak hanya berlaku pada unit-unit pecahan, tetapi juga berlaku pada setiap pecahan yang memiliki pembilang sama. (Bayangkan untuk menempatkan beberapa beban yang banyaknya sama pada sisi kanan dan kiri suatu timbangan. Semua beban di sisi kiri memiliki berat yang sama, dan semua beban di sebelah kanan memiliki berat yang sama. Akan tetapi setiap beban pada sisi kiri lebih ringan daripada setiap beban di sebelah kanan. Beban manakah yang lebih ringan, semua beban di sebelah kiri atau kanan?)
Sekarang kita akan membandingkan 2/5 dan 3/7. Untuk membandingkan kedua pecahan ini, perhatikan gambar berikut!
Seperlima dan Sepertujuh
Dari gambar tersebut kita dapat melihat bahwa 2/5 kurang dari 1/2, yaitu sebesar setengahnya 1/5. Sedangkan 3/7 kurang dari 1/2, yaitu sebesar setengahnya 1/7. Karena 1/5 lebih besar dari 1/7, maka 2/5 terletak di sebelah kiri 1/2 lebih jauh daripada 3/7. Hal ini menunjukkan bahwa, 2/5 < 3/7, dan tamu ke-13 seharusnya pergi ke meja 3.
Dan Tamu-tamu Selanjutnya
Tamu yang ke-14 mungkin mengatakan bahwa telah ditunjukkan 1/3 = 2/6 < 2/5. Dengan menggunakan penalaran ini, 1/3 = 3/9 < 3/8. Sehingga kita perlu membandingkan 2/5 dan 3/8. Sebelumnya kita telah mendapatkan bahwa 2/5 kurang dari 1/2, yaitu sebesar setengahnya 1/5. Atau dengan kata lain, 2/5 kurang dari 1/2 sebesar 1/10. Atau,
Pecahan I
Di sisi lain, 1/2 = 4/8 dan 3/8 sama dengan 1/8 kurangnya dari 1/2, atau
Pecahan II
Lagi, seperti kasusnya tamu ke-7, kita mengurangkan pecahan yang sama, tetapi 1/10 lebih kecil dari 1/8. Sehingga, 2/5 lebih besar dari 3/8, dan meja ke-2 harus dipilih oleh tamu ke-14. Selanjutnya, tamu ke-15 harus memilih meja ke-3. Tamu ke-16 mendapatkankan bagian yang sama di setiap meja.
Setelah tamu ke-16 tersebut, kita dapat menghentikan permainan ini. Walaupun secara teoritis, permainan ini dapat diteruskan sampai tamu yang tak terbatas. Semoga bermanfaat, yos3prens.